

Best Clinical Practices in PMS

Alexander Kolevzon, MD
Seaver Autism Center for Research and Treatment
Icahn School of Medicine at Mount Sinai

REVIEW Open Access

Phelan-McDermid syndrome: a review of the literature and practice parameters for medical assessment and monitoring

Alexander Kolevzon^{1,2,3,10,11*}, Benjamin Angarita^{1,2}, Lauren Bush^{1,2}, A Ting Wang^{1,2,4,10}, Yitzchak Frank^{1,2,3,5}, Amy Yang⁶, Robert Rapaport^{3,7}, Jeffrey Saland³, Shubhika Srivastava^{3,8}, Cristina Farrell^{1,3,9}, Lisa J Edelmann⁶ and Joseph D Buxbaum^{1,2,4,6,10,11}

Kolevzon et al. Journal of Neurodevelopmental Disorders 2014, 6:39 http://www.jneurodevdisorders.com/content/6/1/39

Table 3: Summary of Clinical Recommendations for Assessment Medical Specialty Common Clinical Features Assessments Clinical Genetics Large fleshy hands Dysmorphology exam Bulbous nose Long eyelashes Prominent/dysplastic ears Hypoplastic/dysplastic nails Dolicocephaly Molecular Genetics Chromosomal Microarray Chromosome analysis (to identify ring chromosomes) Sanger or next generation sequencing (for mutations) Fluorescence in situ hybridization (to identify balanced rearrangements in parents) Psychiatry Autism spectrum disorder Gold standard diagnostic assessments Psychology Aberrant behavior Psychiatric evaluation Intellectual disability Cognitive and adaptive behavior testing Absent or delayed speech Speech and language evaluation Neurology Seizures Overnight video-electroencephalography Structural brain abnormalities Brain imaging and head circumference monitoring Feeding difficulties Feeding therapy evaluation Occupational and physical therapy evaluations Hypotonia Motor skill deficits Monitor height, weight, and body mass index Endocrinology Short/tall stature Metabolic work-up, including thyroid function Hypothyroidism Nutritional assessment Nephrology Vesicoureteral reflux Renal and bladder ultrasonography voiding cystourethrogram Urinary tract infections Hydronephrosis Monitoring of blood pressure Renal cysts, hypoplasia or agenesis Cardiology Congenital heart defects Electrocardiography Echocardiography Referral for dietary changes and/or medicine Gastroenterology Gastroesophageal reflux Constipation/diarrhea management Pica Bowel regimens Referral to behavioral therapy Primary Care/ Upper respiratory tract Careful and consistent monitoring and management Developmental Pediatrics infections Referral to otolaryngology, ophthalmology, Recurring ear infections physiatry, dental, and orthopedics Hearing and vision problems Lymphedema Dental problems Decreased perspiration/heat intolerance

April 2008 · Vol. 10 · No. 4

ACMG Practice Guidelines

Clinical genetics evaluation in identifying the etiology of autism spectrum disorders

G. Bradley Schaefer, MD¹, Nancy J. Mendelsohn, MD², and the Professional Practice and Guidelines Committee

@ American College of Medical Genetics and Genomics

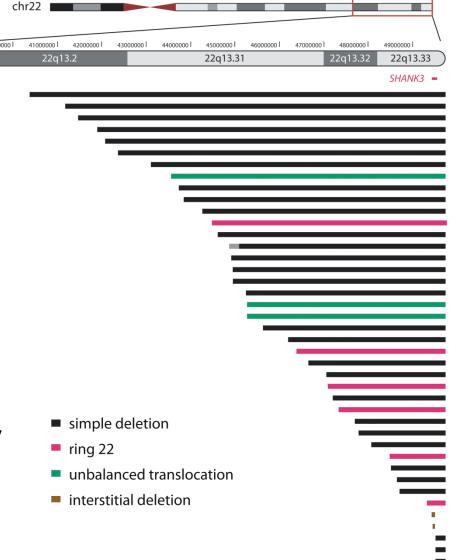
ACMG PRACTICE GUIDELINES

Genetics inMedicine

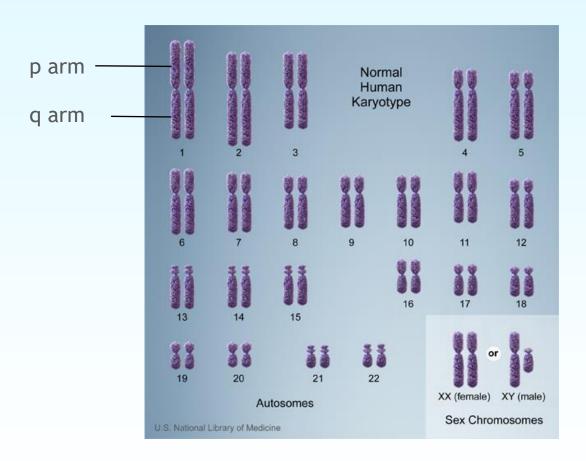
Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions

G. Bradley Schaefer, MD¹ and Nancy J. Mendelsohn, MD²; for the Professional Practice and Guidelines Committee

Phelan-McDermid syndrome/22q13 deletion syndrome

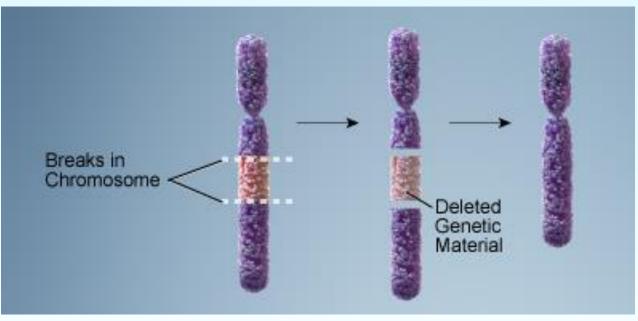

Deletion band 22q13.3:

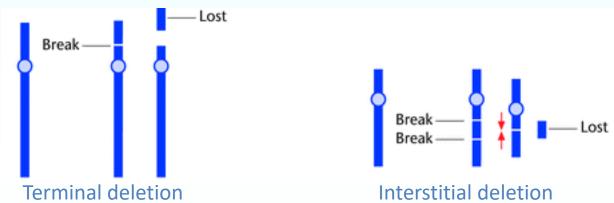
- simple terminal deletions
- unbalanced rearrangements
- (translocation, ring chromosome, inversion)
- interstitial deletions


~80% de novo, ~20% familial translocation

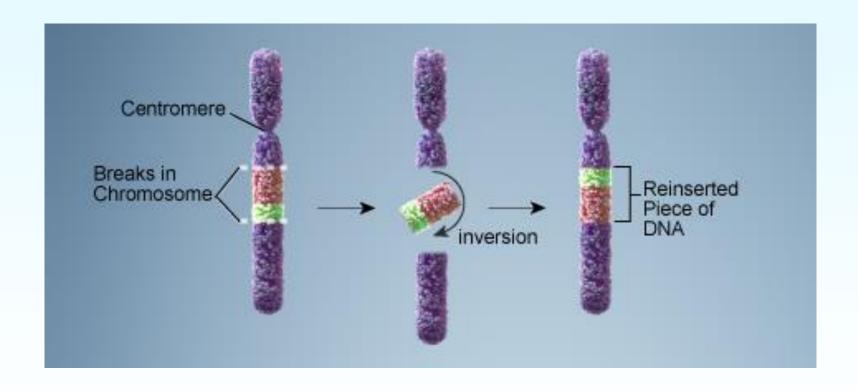
Deletion sizes are highly variable, with no common breakpoints (17 kb - 9 Mb)

Diagnosis: karyotype, FISH, MLPA or microarray

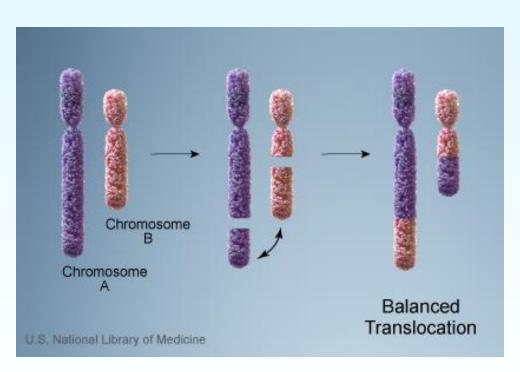

Chromosomes

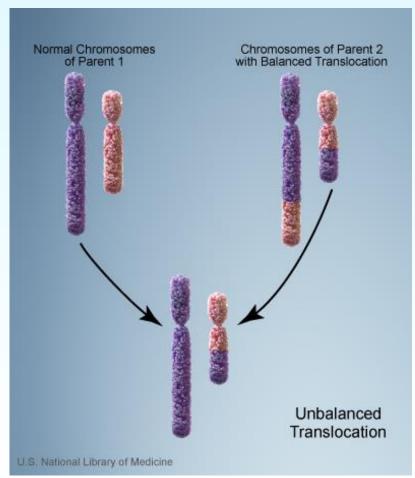


Different types of genetic defects:

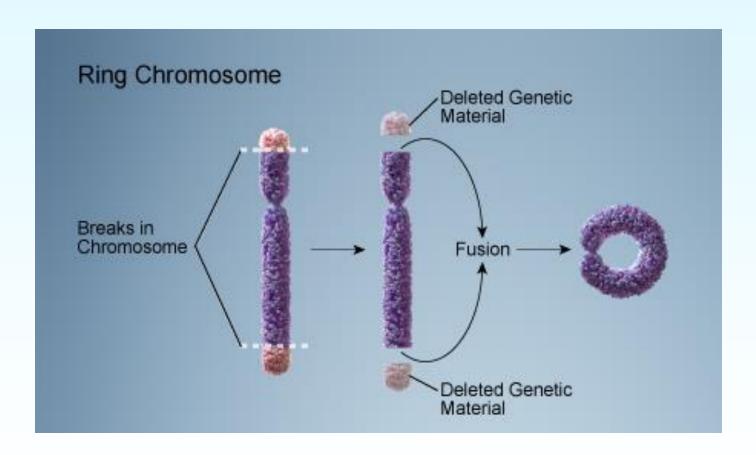

- → chromosomal abnormalities
- → DNA sequence mutations

Deletion

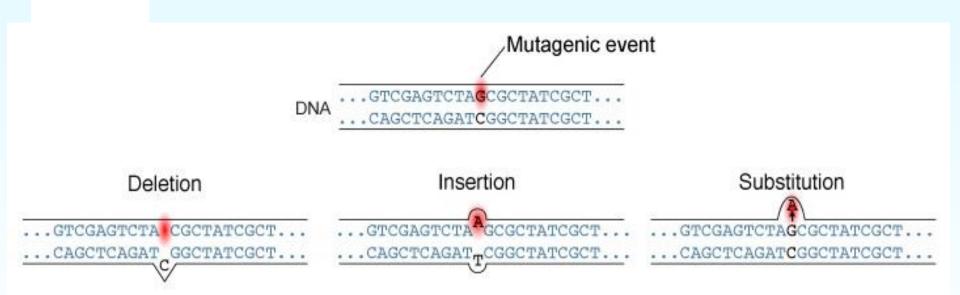




Inversion



Translocation



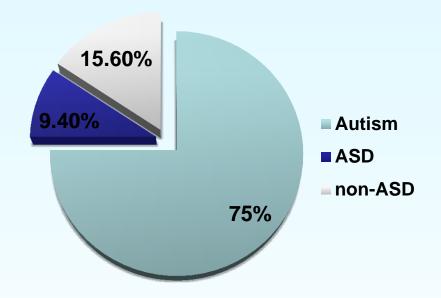
Ring chromosome

DNA sequence mutations

Initial Results

Sample Size	32
Male : Female	18:14
Age (years)	1.7- 45.4 (X = 8.8)
Deletion Size (Mb)	.058 (point) - 8.5

Rearrangement	<u>N</u>	<u>%</u>
Terminal deletion	21	66
Ring 22	6	19
Unbalanced translocation	2	6
Point mutations	2	6
Interstitial deletion	1	3



Phenotyping

Physical and neurological exam	Renal ultrasound
Clinical Genetics Evaluation	Electroencephalography
Medical and Psychiatric History	Laboratory bloodwork
Echocardiography	Height and weight measurement
Electrocardiography	Head circumference

Domain	Measure
Global Cognitive Ability	Mullen Scales for Early Learning or Stanford Binet-5
Adaptive Behavior	Vineland Adaptive Behavior Scales
Language	Mullen and Vineland Subscales
	Macarthur Bates Communication Developmental Inventory
	Peabody Picture Vocabulary Test-4
	Expressive Vocabulary Test-2
Motor Functioning	Mullen and Vineland Subscales
	Developmental Coordination Disorder Questionnaire
Autism Symptoms	Autism Diagnostic Observation Schedule
	Social Responsiveness Scale
	Repetitive Behavior Scales-Revised
Other Symptoms	Child Behavior Checklist
	Aberrant Behavior Checklist
	Sensory Profile Questionnaire- Short Form

ASD and IQ diagnostic classifications

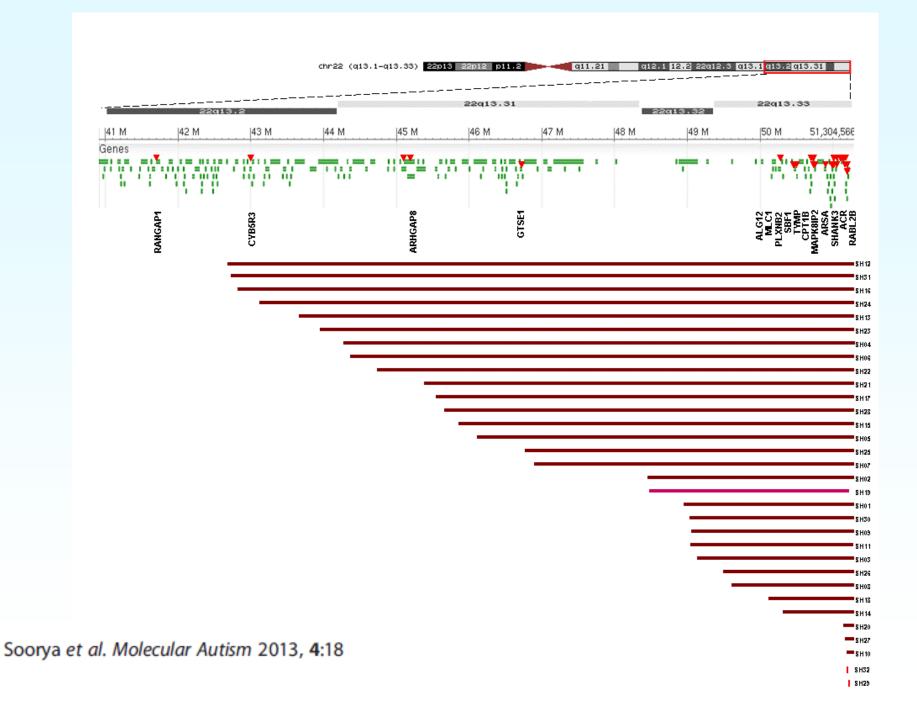
	N	%
Nonverbal IQ classification (n=30)		
Average (IQ 100-110)	1	3.3
Mild intellectual disability (IQ 50-55 to 70)	3	10
Moderate intellectual disability (IQ 35-40 to 50-55)	3	10
Severe intellectual disability (IQ 20-25 to 35-40)	7	23.3
Profound intellectual disability (IQ < 20-25	16	53.3

Table 5 Medical comorbidities identified from clinical interviews and medical record reviews (n = 32)

Medical comorbidity	N	%	Estimated frequency from previous reports *
Increased pain tolerance	28	88	>50%
Hypotonia	24	75	>75%
Recurring upper respiratory tract infections	17	53	
Gastroesophageal reflux	14	44	>25%
Sleep disturbance	13	41	
Seizures (febrile and/or non-febrile)	13	41	>25%
Constipation and/or diarrhea	12	38	
Renal abnormalities	12	38	>25%
Lymphedema	7	22	>25%
Seasonal allergies	6	19	
Food allergies	5	16	
Asthma	3	9	
Strabismus	2	6	>25%
Cardiac abnormalities	1	3	>25%
Hypothyroidism	1	3	5%
Hypertrichosis	1	3	
Vitiligo	1	3	

Soorya et al. Molecular Autism 2013, 4:18

^{*}Phelan & McDermid, 2012


Table 4 Dysmorphic features identified in the clinical genetic evaluation (N = 32)

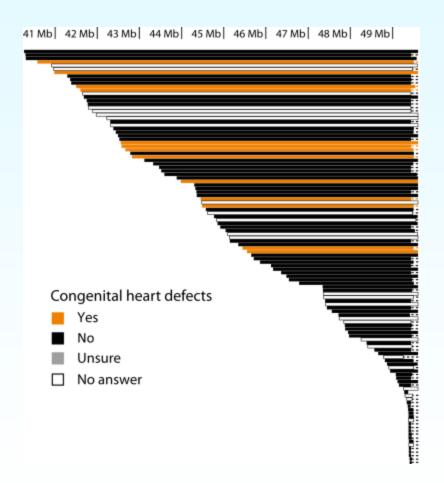
Dysmorphic features	N	%	Estimated frequency from previous reports [50] *
Large, fleshy hands	17	53	>50%
Bulbous nose	15	47	>50%
Long eyelashes	14	44	>50%
Ear anomalies	13	41	>50%
Hypoplastic/dysplastic nails	11	34	>50%
Full lips	10	31	
Epicanthal folds	10	31	>25%
Macrocephaly ^a	10	31	
Dolichocephaly	8	25	>50%
High arched palate	8	25	>25%
Hyperextensibility	8	25	
Full cheeks	8	25	>50%
Periorbital fullness	8	25	>50%
Pointed chin	7	22	>50%
Abnormal spine curvature	7	22	
Wide nasal bridge	5	16	>50%
Long philtrum	5	16	>25%

Sparse hair/abnormal whorl	5	16	
Malocclusion/widely spaced teeth	6	19	>25%
Micrognathia	4	13	
Hypertelorism	4	13	
Short stature ^b	4	13	
Sacral dimple	4	13	>50%
Syndactyly of toes 2 and 3	3	9	
Malar hypoplasia	3	9	
Fifth finger clinodactyly	3	9	<14%
Microcephaly ^c	2	6	
Deep set eyes	2	6	>50%
Accelerated growth ^d	1	3	
Flat midface	1	3	>50%
Ptosis	1	3	>25%
Low set ears	1	3	

Soorya et al. Molecular Autism 2013, 4:18

^{*}Phelan & McDermid, 2012

Association between deletion size and phenotypic variables


Phenotypic variable		Deletion size	n BCa confidence interval#	
			Lower	Upper
Number of dysmorphic features	32	.474*	.145	.738
Number of medical comorbidities	32	.386*	.022	.640
Nonverbal IQ estimate	29	332	640	.112
Gross motor skills (Vineland)	31	402 [†]	728	.036
Fine motor skills (Vineland)	31	123	473	.254
Expressive language skills (Vineland)	32	184	531	.199
Receptive language skills (Vineland)	32	231	553	.154
Qualitative abnormalities in reciprocal social interactions (ADI-R)	30	.466*	.073	.723
Qualitative abnormalities in communication (ADI-R)	30	.498*	.091	.740
Restricted, repetitive, and stereotyped patterns of behavior (ADI-R)	30	229	592	.214

^{*}significant at .05 level (two-tailed test)

[†]approached significance at .05 level

Genotype-Phenotype

Relationship between presence of congenital heart defects and deletion size in the PMS International Registry

The spectrum of epilepsy and electroencephalographic abnormalities due to SHANK3 loss-of-function mutations

J. Lloyd Holder, Jr. and Michael M. Quach

Epilepsia, 57(10):1651-1659, 2016

SUMMARY

Objective: The coincidence of intellectual disability. Individe intellectual disability, autism, ologies and electroencephalog in detail. With the recent report 2% of individuals with modera with autism, determining the abnormalities will be critical families of patients with SHAN

<u>Significance</u>: All individuals with a mutation in SHANK3 should be evaluated for epilepsy due to the high prevalence of seizures in this population. The most common semiology is atypical absence seizure, which can be challenging to identify due to comorbid intellectual disability in individuals with SHANK3 mutations; however, no consistent seizure semiology, neuroimaging findings, or EEG findings were present in the majority of individuals with SHANK3 mutations.

Methods: A retrospective chart review was performed of all individuals treated at the Blue Bird Circle Clinic for Child Neurology who have been identified as having either a chromosome 22q13 microdeletion encompassing SHANK3 or a loss-of-function mutation in SHANK3 identified through whole-exome sequencing. For each subject, the presence or absence of seizures, seizure semiology, frequency, age of onset, and efficacy of therapy were determined. Electroencephalography studies were reviewed by a board certified neurophysiologist. Neuroimaging was reviewed by both a board certified pediatric neuroradiologist and child neurologist.

Results: There is a wide spectrum of seizure semiologies, frequencies, and severity in individuals with SHANK3 mutations. There are no specific EEG abnormalities found in our cohort, and EEG abnormalities were present in individuals diagnosed with epilepsy and those without history of a clinical seizure.

Significance: All individuals with a mutation in SHANK3 should be evaluated for epilepsy due to the high prevalence of seizures in this population. The most common semiology is atypical absence seizure, which can be challenging to identify due to comorbid intellectual disability in individuals with SHANK3 mutations; however, no consistent seizure semiology, neuroimaging findings, or EEG findings were present in the majority of individuals with SHANK3 mutations.

Jimmy Holder, MD

Neurobehavioral Profile and Brain Imaging Study of the 22q13.3 Deletion Syndrome in Childhood

Anne Philippe, MD, PhDa, Nathalie Boddaert, MD, PhDb, Laurence Vaivre-Douret, PhDc, Laurence Robel, MD, PhDc, Laurent Danon-Boileau, PhDa, Valérie Malan, MDa, Marie-Christine de Blois, MDa, Delphine Heron, MDf, Laurence Colleaux, PhDa, Bernard Golse, MDc, Monica Zilbovicius, MD, PhDb, Arnold Munnich, MD, PhDa

Pediatrics 2008;122:e376-e382

Cerebellar and posterior fossa malformations in patients with autism-associated chromosome 22q13 terminal deletion

Kimberly A. Aldinger^{1,10}, Jillene Kogan^{2,11}, Virginia Kimonis³, Bridget Fernandez⁴, Denise Horn⁵, Eva Klopocki⁵, Brian Chung⁶, Annick Toutain⁷, Rosanna Weksberg⁶, Kathleen J. Millen⁸, A. James Barkovich⁹, and William B. Dobyns⁸

Am J Med Genet A. 2013 January

Neural selectivity for communicative auditory signals in Phelan-McDermid syndrome

A. Ting Wang^{1,2,3,4*}, Teresa Lim⁵, Jesslyn Jamison^{1,2}, Lauren Bush⁶, Latha V. Soorya⁷, Teresa Tavassoli^{1,2}, Paige M. Siper^{1,2}, Joseph D. Buxbaum^{1,2,3,4,8,9} and Alexander Kolevzon^{1,2,4,9,10}

Journal of Neurodevelopmental Disorders (2016) 8:5

Neuroimaging Findings

- Most descriptions of PMS (n=~70) report higher than expected rates of structural brain changes (~70%):
 - thinning or hypoplasia of the corpus callosum;
 - white matter changes (e.g., delayed myelination, generalized white matter atrophy);
 - ventricular dilatation;
 - cysts;
 - cerebellar malformations (e.g., hypoplasia).

ORIGINAL ARTICLE

Sleep Disturbances in Individuals With Phelan-McDermid Syndrome: Correlation With Caregivers' Sleep Quality and Daytime Functioning

Della Bro, MS, CGC¹; Ruth O'Hara, PhD²; Michelle Primeau, MD^{2,3}; Andrea Hanson-Kahn, MS, LCGC^{4,5}; Joachim Hallmayer, MD²; Jonathan A. Bernstein, MD, PhD⁵

¹Virginia Piper Cancer Institute, Allina Health, Minneapolis, MN; ²Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA; ³Department of Sleep Medicine, Palo Alto Medical Foundation, Sunnyvale, CA; ⁴Department of Genetics, Stanford University School of Medicine, Stanford, CA; ⁵Department of Pediatrics, Stanford University School of Medicine, Stanford, CA

- Clinically significant sleep problems appear prevalent in children with PMS (90% in this sample);
- Disordered child sleep correlates with disordered caregiver sleep;
- Most children with PMS have not been formally evaluated for sleep disorders;
- Addressing sleep problems in children with PMS may improve the well-being of the entire family.

Table 3: Summary of Clinical Recommendations for Assessment Medical Specialty Common Clinical Features Assessments Clinical Genetics Large fleshy hands Dysmorphology exam Bulbous nose Long eyelashes Prominent/dysplastic ears Hypoplastic/dysplastic nails Dolicocephaly Molecular Genetics Chromosomal Microarray Chromosome analysis (to identify ring chromosomes) Sanger or next generation sequencing (for mutations) Fluorescence in situ hybridization (to identify balanced rearrangements in parents) Psychiatry Autism spectrum disorder Gold standard diagnostic assessments Psychology Aberrant behavior Psychiatric evaluation Intellectual disability Cognitive and adaptive behavior testing Absent or delayed speech Speech and language evaluation Neurology Seizures Overnight video-electroencephalography Structural brain abnormalities Brain imaging and head circumference monitoring Feeding difficulties Feeding therapy evaluation Occupational and physical therapy evaluations Hypotonia Motor skill deficits Monitor height, weight, and body mass index Endocrinology Short/tall stature Metabolic work-up, including thyroid function Hypothyroidism Nutritional assessment Nephrology Vesicoureteral reflux Renal and bladder ultrasonography voiding cystourethrogram Urinary tract infections Hydronephrosis Monitoring of blood pressure Renal cysts, hypoplasia or agenesis Cardiology Congenital heart defects Electrocardiography Echocardiography Referral for dietary changes and/or medicine Gastroenterology Gastroesophageal reflux Constipation/diarrhea management Pica Bowel regimens Referral to behavioral therapy Primary Care/ Upper respiratory tract Careful and consistent monitoring and management Developmental Pediatrics infections Referral to otolaryngology, ophthalmology, Recurring ear infections physiatry, dental, and orthopedics Hearing and vision problems Lymphedema Dental problems Decreased perspiration/heat intolerance

Practice Parameters for Medical Assessment and Monitoring of Phelan-McDermid Syndrome

What families and doctors should talk about

Psychiatry & Psychology

- Autism spectrum disorder
- □ Gold standard diagnostic assessments
- Aberrant behavior
- ☐ Psychiatric evaluation
- Intellectual disability
- □ Cognitive and adaptive behavior testing
- Absent or delayed speech
- □ Speech and language evaluation

Endocrinology

- Short/tall stature
- ☐ Monitor height, weight, and body mass index
- Hypothyroidism
- ☐ Metabolic work-up, including thyroid function
- □ Nutritional assessment

Cardiology

- Congenital heart defects
- □ Electrocardiography
- □ Echocardiography

Gastroenterology

- Gastroesophageal reflux
- □ Referral for dietary changes and/or medication
- Constipation/ diarrhea

- Pica

□ Referral to behavioral

therapy

Neurology

- Seizures
- □ Overnight video electroencephalography
- Structural brain abnormalities
- □ Brain imaging and head circumference monitoring
- Feeding difficulties

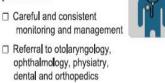
- Hypotonia

 Occupational and physical therapy evaluations

□ Feedling therapy evaluation

- Motor skills deficits

Nephrology


- Vesicoureteral reflux
- □ Renal and bladder ultrasonography
- Urinary tract infections

Hydronephrosis

- □ Voiding cystourethrogram ☐ Monitoring of blood pressure
- Renal cysts, hypoplasia, or agenesis

Primary care/ developmental pediatrics

- Upper respiratory tract infections
- □ Careful and consistent
- Recurring ear infections
- ophthalmology, physiatry, dental and orthopedics
- Hearing and vision problems
- Lymphedema
- Decreased perspiration/ heat intolerance

This document is meant as a guide. Not all patients need all tests.

Recommendations for Clinical Assessment in Phelan McDermid Syndrome

Medical Specialty	Assessment Recommended	Performed prior to	Completed	Recommendation for
		your visit	during your visit	follow-up
Primary Care/Development	Careful and routine monitoring	X		Age specific
Pediatrics	Hearing Assessment	X		
	Visual Assessment	X		
	Monitoring of height, weight and BMI	X	X	Ongoing
	Otolaryngology (ENT)	X		
	Pediatric dentistry	X		Every six months
	Physiatrist/physical therapy	X		Ongoing
Psychiatric and Psychology	Psychiatric evaluation with focus on autism spectrum disorder	X	X	Every year
	Autism Diagnostic Observation Schedule (ADOS)	Х	X	As indicated
	Cognitive or Developmental Assessment	X	X	Every year
	Speech and Language Evaluation/Therapy	X		Ongoing
	Adaptive Function Testing	X		Every year
	Educational Assessment	X		Ongoing
	Occupational Therapy	X		Ongoing
Neurology	Motor development, coordination and gait	X	X	Ongoing
	monitoring, as well as conditions that			
	might be associated with hypotonia, like			
	neuromuscular scoliosis and feeding problems			
	Overnight video EEG	X		As clinically indicated
	Structural brain MRI	X		As clinically indicated
	Head circumference up to 36 months	X		
Nephrology	Renal and bladder ultrasonography	X		As clinically indicated
Cardiology	Echocardiogram	X		As clinically indicated
	Electrocardiogram	X		As clinically indicated
Endocrinology	Thyroid function	X		As clinically indicated
	Nutritional assessment	X		As clinically indicated

Acknowledgments*

Seaver Center Team

- Joseph Buxbaum
- Paige Siper
- Danielle Halpern
- Ting Wang
- Michelle Gorenstein
- Jennifer Foss-Feig
- Yitzchak Frank
- Reymundo Lozano
- Hala Harony-Nicolas
- Silvia De Rubeis

*Dr. Buxbaum and Mount Sinai hold a shared patent for the use of IGF-1 in PMS

Neuropsych Group

- Deborah Pearson
- Thomas Frazier

PMS Consortium

- Latha Soorya
- Elizabeth Berry-Kravis
- Audrey Thurm
- Jon Bernstein
- Craig Powell
- Matt Mosconi
- Lauren Ethridge

Boston Children's Team

- Mustafa Sahin
- April Levin
- Chuck Nelson

